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Source: Seagate “Data Age 2025” July 2017
Forbes Magazine: 20 Mind-Boggling Facts Every Business Leader Must Reflect On Now (Nov 1, 2015); Inside Big Data: Exponential Growth of Data (Feb 16, 2017)

Yet less than 1% of 
all data 

is ever analyzed 
and used 

World’s data will grow
10Xin 10 years 



Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel AI Strategy: “Artificial Intelligence Everywhere”
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Intel Processors

AI (ML & DL) Software Stack for Intel® Processors 

Intel® Math Kernel Library (Intel® MKL) is a proprietary performance library for wide 
range of math and science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip), 
Intel® Parallel Studio XE, Intel® System Studio

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (TensorFlow*, MXNet*, PyTorch*, PaddlePaddle*)
• Intel deep learning products (BigDL, OpenVINO™ toolkit) 
• In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning  and machine learning 
applications for Intel® processors :
• Through the collaboration with framework maintainers to upstream changes 

(Tensorflow*, MXNet*, PyTorch, PaddlePaddle*) 
• Through Intel-optimized forks (Caffe*)
• By partnering to enable proprietary solutions

Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) is an open 
source performance library for deep learning applications (available at 
https://github.com/intel/mkl-dnn)
• Fast open source implementations for wide range of DNN functions
• Early access to new and experimental functionality
• Open for community contributions

Intel MKL-DNNIntel MKL

9

https://github.com/intel/mkl-dnn
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SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout)
*Limited availability today
Other names and brands may be claimed as the property of others.

* *

Popular DL Frameworks are now optimized for CPU!

See installation guides at  ai.intel.com/framework-optimizations/

More under optimization:

TM

*
* *

*FOR

https://www.intelnervana.com/framework-optimizations/
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Artificial
I ntelligence

is the ability of machines to 
learn from experience without explicit 
programming, in order 
to perform cognitive functions 
associated with the human mind

Artificial Intelligence

Machine learning
Algorithms whose performance 
improve as they are exposed to 

more data over time

Deep 
learning

Subset of machine 
learning in which multi-
layered neural networks 
learn from vast amounts 

of data
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Machine Learning Technology Breakdown

Training
Train an algorithm to build a model

• Time-to-model is critical

Inference
Deploy models for classification, 

prediction, recognition

• Easily distributed
• Criteria: Throughput, TCO @ scale 

Deep Learning 
Hierarchical approach with many hidden layers -

gaining fame from accurately classifying 
data-like images, speech, and natural language.  

Features are learned.  

Other (or classic) ML 
Traditional ML techniques for clustering, regression, 
and classification using very few (one or two) hidden 

layers. Requires feature engineering.

Typical customers: CSP, HPC Typical customers: Enterprise, HPC

Machine Learning  
Autonomous computation methods that learn from experience (data)

“dog”

Intel® DAAL Focus
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Using Deep Learning
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Source: ILSVRC ImageNet winning entry classification error rate each year 2010-2016 (Left), https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone/ (Right)

Deep Learning Breakthroughs
Machines able to meet or exceed human image & speech recognition
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Depth of Networks

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

CNN
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your 
FOUNDATION

for AI

Intel® Xeon® Processor Scalable Family
Now build the AI you want on the CPU you know

Get maximum utilization
running data center and AI workloads side-by-side

Break memory barriers
to apply AI to large data sets and models

Train models at scale
through efficient scaling to many nodes

Access optimized tools
including continuous performance gains for TensorFlow*, MXNet*, more

Run in the cloud
including AWS, Microsoft, Alibaba, TenCent, Google, Baidu, more
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1.0

2.8X

Intel® Optimized  Caffe
At launch, July 11th 2017

With  new  library and 
framework optimizations

Jan 19th 2018

Introducing new INT8 VNNI 
instruction

Projected Performance4

Intel® Xeon® Platinum 8180 Processor
(Codenamed: Skylake)

Projected Future Intel® Xeon® Scalable 
Processor 

(Codename: Cascade Lake)

11X

Continued Innovation Driving Deep Learning Inference Performance 
On Intel® Xeon® Scalable Processors

FP32

FP32

1 Intel® Optimization for Caffe Resnet-50 performance does not necessarily represent other Framework performance.
2 Based on Intel internal testing: 1X (7/11/2017), 2.8X (1/19/2018) and 5.4X (7/26/2018) performance improvement based on Intel® Optimization for Café Resnet-50 inference throughput performance on Intel® Xeon® Scalable Processor.  
3 11X (7/25/2018) Results have been estimated using internal Intel analysis, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. 

Performance results are based on testing as of 7/11/2017(1x), 1/19/2018(2.8x) & 7/26/2018(5.4) and may not reflect all publically available security update. No product can be absolutely. See configuration disclosure for details. No product can be absolutely secure .Optimization Notice: Intel's compilers may or may not optimize 
to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not 
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any 
change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete 
information visit:  http://www.intel.com/performance

Intel® Optimization for Caffe ResNet-501 

Inference Throughput

5.4X
INT8

Enabling Lower precision & 
system optimizations for higher 

throughput 
August 1th 2018

Intel® Deep 
Learning 
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Configurations for Performance Growth- Inference throughput
1x inference throughput improvement in July 2017:

Tested by Intel as of July 11th 2017: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 
7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, 
OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --
forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from 
https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe 
prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“. 

2.8x inference throughput improvement in January 2018:
Tested by Intel as of Jan 19th 2018 Processor :2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux-7.3.1611-Core, SSD sda RS3WC080 HDD 744.1GB,sdb 
RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimization for caffe version:f6d01efbe93f70726ea3796a4b89c612365a6341 Topology::resnet_50_v1 BIOS:SE5C620.86B.00.01.0009.101920170742 MKLDNN: version: 
ae00102be506ed0fe2099c6557df2aa88ad57ec1 NoDataLayer. . Datatype:FP32 Batchsize=64 Measured: 652.68 imgs/sec vs Tested by Intel as of July 11th 2017: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo 
disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, 
MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), 
revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, 
data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),and https://github.com/soumith/convnet-
benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 
2018.0.20170425. Caffe run with “numactl -l“. 

5.4x inference throughput improvement in August 2018:
Tested by Intel as of measured July 26th 2018 :2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux-7.3.1611-Core, kernel: 3.10.0-862.3.3.el7.x86_64, SSD sda 
RS3WC080 HDD 744.1GB,sdb RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimization for caffe version:a3d5b022fe026e9092fc7abc7654b1162ab9940d Topology::resnet_50_v1 
BIOS:SE5C620.86B.00.01.0013.030920180427 MKLDNN: version:464c268e544bae26f9b85a2acb9122c766a4c396 instances: 2 instances socket:2 (Results on Intel® Xeon® Scalable Processor were measured running multiple instances of the 
framework. Methodology described here: https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi) NoDataLayer. Datatype: INT8 Batchsize=64 Measured: 1233.39 imgs/sec vs Tested by 
Intel as of July 11th 2017:2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux 
kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set 
with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured 
with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from 
https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“. 

11X inference throughput improvement with CascadeLake:
Future Intel Xeon Scalable processor (codename Cascade Lake) results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your 
system hardware, software or configuration may affect your actual performance vs Tested by Intel as of July 11th 2017: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via 
intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment 
variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision 
f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was 
stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),. Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries 
version 2018.0.20170425. Caffe run with “numactl -l“. 

http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners
https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
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Deep Learning INFERENCE & Deep Learning TRAINING

Intel® Xeon® Scalable Processors for AI
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Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Intel internal measurements. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and 
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configuration Summary: 
1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Purley-EP (Lewisburg) (S2600WF) with 384 GB (12x32GB DDR4-2666) Total Memory, Intel S3610 800GB SSD, BIOS: 
SE5C620.86B.01.00.0471.040720170924, 04/07/2017, RHEL Kernel: 3.10.0-514.16.1.el7.x86_64 x86_64, Benchmark: Intel® Optimized MP LINPACK
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Intel® AVX-512 delivers significant performance and 
efficiency gains
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512-bit wide vectors, 32 operand registers, 8 64b mask registers, Embedded broadcast & rounding
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Int8 for Inference on Intel® Xeon® Scalable Processors

FP32 

INT8 

Typical Intel® AVX-512 instruction to perform FP32 convolutions: vfmadd231ps

INPUT 
FP32

INPUT 
FP32

vfmadd231ps OUTPUT 
FP32

Typical Intel® AVX-512 instructions to perform INT8 convolutions: vpmaddubsw, vpmaddwd, vpaddd

INPUT 
INT8

INPUT 
INT8

vpmaddubsw OUTPUT 
INT16

CONSTANT
INT16

vpmaddwd OUTPUT 
INT32

CONSTANT
INT32

vpaddd OUTPUT 
INT32

Lower 
precision 

integer ops

64 Ops/Cycle 

85 Ops/Cycle 

Increase 
Operations/cycl
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throughput 
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1.0

2.8X

Intel® Optimized  Caffe
At launch, July 11th 2017

With  new  library and 
framework optimizations

Jan 19th 2018

Introducing new INT8 VNNI 
instruction

Intel® Xeon® Platinum 8180 Processor

2nd Generation Intel® Xeon® Scalable 
Processor 

11X

Continued Innovation Driving Deep Learning Inference Performance 
On Intel® Xeon® Scalable Processors

FP32

FP32

1 Intel® Optimization for Caffe Resnet-50 performance does not necessarily represent other Framework performance.
2 Based on Intel internal testing: 1X (7/11/2017), 2.8X (1/19/2018) and 5.4X (7/26/2018) performance improvement based on Intel® Optimization for Café Resnet-50 inference throughput performance on Intel® Xeon® Scalable Processor. See Configuration Details 53 
3 11X (7/25/2018) Results have been estimated using internal Intel analysis, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. 

Performance results are based on testing as of 7/11/2017(1x), 1/19/2018(2.8x) & 7/26/2018(5.4) and may not reflect all publically available security update. No product can be absolutely. See configuration disclosure for details. No product can be absolutely secure .Optimization Notice: Intel's compilers may or may not optimize 
to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not 
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any 
change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete 
information visit:  http://www.intel.com/performance

Intel® Optimization for Caffe ResNet-501 

Inference Throughput

5.4X
INT8

Enabling Lower precision & 
system optimizations for higher 

throughput 
August 1th 2018
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Training Performance: ResNet-50/ChestXRay14
Intel® 2S Xeon® Gold 6148F processor based DellEMC* PowerEdge C6420 Zenith* Cluster on OPA™ Fabric

TensorFlow* 1.6 + horovod*, IMPI
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104x faster using 128 
Intel® Xeon® nodes!

120x faster using 200 
Intel® Xeon® nodes!

147x faster using 256 
Intel® Xeon® nodes!

Performance results are based on testing as of May 17, 2018 and may not reflect all publicly available security update. See configuration disclosure for details. No product can be absolutely secure.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

http://www.intel.com/performance
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AI Performance Growth on Intel® Xeon® Processors
Software Optimizations and Hardware features driving Deep Learning Performance on Intel® 

Xeon® Scalable Processors

1 5.7x inference throughput improvement with Intel® Optimizations for Caffe ResNet-50 on Intel® Xeon® Platinum 8180 Processor in Feb 2019 compared to performance at launch in July 2017. See configuration details on Config 1
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice: 
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other 
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with 
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific 
instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured 
using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit:  http://www.intel.com/performance

Baseline

50x

285x

The picture can't be displayed.

2S Intel® Xeon® Scalable Processor (Skylake)
July 2017 July 2017 Skylake launch February 2019

vs. Baseline vs. Baseline

The picture can't be displayed.

5.7x1

improved use of 
parallelization and 

vectorization

improvement with library and 
framework optimizations, enabling lower 

precision & system Optimizations

Orders of 
magnitude 

improvement in 
deep learning 
performance

http://www.intel.com/performance
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Optimized Deep Learning Frameworks and Toolkits
Gen on Gen Performance gains for ResNet-50 with Intel® DL Boost

See Configuration Details 5
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice: 
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other 
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with 
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific 
instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured 
using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit:  http://www.intel.com/performance

2S Intel® Xeon® Platinum 8280 Processor  vs  2S Intel® Xeon® Platinum 8180 Processor

4.0x

2.3x1.8x

3.9x

1.8x

3.0x

Intel® Xeon®  
Scalable Processor 

2nd Gen Intel® Xeon®  
Scalable Processor 

1.9x

3.9x

2.1x

3.7xFP32 INT8 w/ 
Intel® DL Boost

INT8 INT8 w/ 
Intel® DL Boost

http://www.intel.com/performance
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Deep Learning Training

Forward Propagation

Backward Propagation

Cat Person

Ground TruthNetwork Output

Complex Networks with billions of parameters can take days to train on a modern processor

Hence, the need to reduce time-to-train. Maybe using a cluster of processing nodes? 
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143 GFLOPS¹
1 TFLOPS2

8 TFLOPS³

Paragon 
#1 in 1993

ASCI Red 
#1 in 1997 

Data Center and 
Cloud 2019 

Xeon Server 
2017 

1. https://www.top500.org/featured/systems/intel-xps-140-paragon-sandia-national-labs/     

2. https://en.wikipedia.org/wiki/Advanced_Simulation_and_Computing_Program

3. https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz

PFLOPS-EFLOPS?

Supercomputer in a CPU Box
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Distributed Deep Learning Training Across Multiple nodes
Each node running multiple workers/node

Uses optimized MPI Library for gradient updates over network fabric
Caffe – Use Optimized Intel® MPI ML Scaling Library (Intel® MLSL)

TensorFlow* – Uber Horovod MPI Library

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod

Scaleout Training: Multi-Workers & Multi-Nodes

Interconnect Fabric (Intel® OPA or Ethernet)

Node 1 Node NNode 2

https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod
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Training Performance: ResNet-50/ChestXRay14
Intel® 2S Xeon® Gold 6148F processor based DellEMC* PowerEdge C6420 Zenith* Cluster on OPA™ Fabric

TensorFlow* 1.6 + horovod*, IMPI
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104x faster using 128 
Intel® Xeon® nodes!

120x faster using 200 
Intel® Xeon® nodes!

147x faster using 256 
Intel® Xeon® nodes!

Performance results are based on testing as of May 17, 2018 and may not reflect all publicly available security update. See configuration disclosure for details. No product can be absolutely secure.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

http://www.intel.com/performance
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What’s Happening Under The Hood?

Intel® MKL-DNN Functionality

Intel® MKL-DNN v0.16

Convolution Direct 3D, Depthwise separable convolution

Winograd convolution

Deconvolution

Fully Connected Layer Inner Product

Pooling Maximum

Average (include/exclude padding)

Normalization LRN across/within channel, Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;

Softmax, Logistic, linear; square, sqrt, abs

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, s32, s16, s8, u8

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be 

claimed as the property of others. Copyright © 2016, Intel Corporation.

Intel Confidential

Features: 

§ Training (float32) and inference (float32, int8)

§ CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

§ Optimized for Intel processors

Portability:

§ Compilers: Intel® C++ Compiler/Clang/GCC/MSVC*

§ OSes: Linux*, Windows*, Mac*

§ Threading: OpenMP*, TBB

Frameworks that use Intel ® MKL-DNN:

Caffe*, TensorFlow*, MxNet*, PaddlePaddle*, Pytorch*, …
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Intel® MKL-DNN Optimization Vectorization

Optimizations: Intel® AVX-512 vectorization, data reuse, parallelization

Lower 
precision 

integer ops
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Converting to/from 
optimized layout can be 
less expensive than 
operating on un-optimized 
layout.

CPU Friendly Layout is 
preferred by most MKL-
DNN primitives

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Conversion After Layout Propagation

AI Framework Software Optimizations 
Layout Propagation
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AI Framework Software Optimizations 
Load Balancing

37

TensorFlow* graphs offer opportunities for parallel 
execution.

Threading model, Tune your Intel® MKL w/
1. inter_op_parallelism_threads = max 

number of operators that can be executed in parallel

2. intra_op_parallelism_threads = max 
number of threads to use for executing an operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of 
intra_op_parallelism_threads

More details: 
https://www.tensorflow.org/performance/performan
ce_guide

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

>>> config = tf.ConfigProto()
>>> config.intra_op_parallelism_threads = 56
>>> config.inter_op_parallelism_threads = 2
>>> tf.Session(config=config)

https://www.tensorflow.org/performance/performance_guide
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Intel-Optimized Frameworks: How To Get?

https://www.intel.ai/framework-optimizations

Check out our intel.ai for the framework optimizations page

https://www.intel.ai/framework-optimizations
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Intel® Optimization of TensorFlow*: How To Get?
Intel TensorFlow* install guide is available à https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

•Refer to Corey Adams talkOn Theta

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
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Intel® Optimization of PyTorch*: How To Get?

•Refer to Corey Adams talkOn Theta

Intel PyTorch* getting started guide is available à https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-of-pytorch

https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-of-pytorch
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Article Plug
Intel–Optimized TensorFlow* Performance Considerations

https://software.intel.com/en-us/articles/maximize-tensorflow-
performance-on-cpu-considerations-and-recommendations-for-
inference

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
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software.intel.com/ai

Get 4-weeks FREE access to the 
Intel® AI DevCloud, use your 
existing Intel® Xeon® Processor-
based cluster, or use a public 
cloud service

Self-Help: Intel® AI Developer Program
For developers, students, instructors, and startups

teach Share

Developlearn

Showcase your innovation at 
industry & academic events 
and online via the Intel AI 
community forum

Get smarter using online 
tutorials, webinars, 

student kits and support 
forums

Educate others using 
available course 

materials, hands-on labs, 
and more
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Free Support: Intel® AI Frameworks Forum
https://forums.intel.com
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Intel® AI Builders: Ecosystem

BUSINESS 
INTELLIGENC

E 
& ANALYTCS

VISION CONVERSATI
ONAL BOTS

AI TOOLS & 
CONSULTING

AI 
PaaS

HEALTHC
ARE

FINANCIA
L 

SERVICES
RETAIL TRANSPORT

ATION
NEWS, 

MEDIA & 
ENTERTAI

NMENT

AGRICUL
TURE

LEGAL & 
HR

ROBOTIC 
PROCESS 
AUTOM
OATION

oem System 
integrators

CROSS 
VERTICAL

VERTICAL

HORIZON
TAL

Builders.intel.com/ai
Other names and brands may be claimed as the property of others.

100+ AI 
Partners
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Intel® AI Builders: Solutions Library

Builders.intel.com/ai/solutionslibraryOther names and brands may be claimed as the property of others.

30+ Public
Whitepapers
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More information at 
www.intel.ai/framework-optimizations/ 

CALL TO ACTION

LEARN

EXPLORE

ENGAGE

Use Intel’s performance-
optimized libraries & frameworks

Use Our Forums for Free Support
forums.intel.com
Choose “Intel Optimized AI Frameworks” from list

For Disclosure under NDA Only

https://ai.intel.com/framework-optimizations/
https://ai.intel.com/framework-optimizations/
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Questions?

Intel® Optimized AI Frameworks
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat



Get fast python* execution
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® Distribution of Python 2019
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Python: Lingua Franca of Data Science

Kaggle ML and Data Science Survey, 2017

Python

https://www.kaggle.com/sudalairajkumar/an-interactive-deep-dive-into-survey-results/datahttps://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-
results.html

Python
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The Reality of “Data Centric Computing”

Performance 
Limited

• Software is slow and single-node for many organizations
• Only sample a small portion of the data

Productivity 
Limited

• More performant/scalable implementations require significantly more 
development & deployment skills & time

Compute 
Limited • Performance bottleneck often in compute, not storage/memory

Software Challenges:
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Performance of Python*

Python Interpreter 
GIL

C

100x-1000x performance gap

Optimizing compiler
OpenMP*/TBB/pthreads
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High Performance Python

Python*

C

more nodes,
more cores, 
more threads, 
wider vectors, …

Intel® Performance Libraries

(generations of processors)

Libraries Thin layer in Python or Cython

Native highly optimized 
libraries (Intel MKL, Intel 
DAAL, Intel IPP)
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Productivity with Performance via Intel® Distribution for Python*

Intel® Distribution for Python*

lll

Easy, out-of-the-box access to high performance Python
• Prebuilt accelerated solutions for data analytics, numerical computing, etc. 
• Drop in replacement for your existing Python. No code changes required.

Learn More: software.intel.com/distribution-for-python

mpi4py smp
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Intel® Distribution for Python*
https://software.intel.com/en-us/distribution-for-python

Accelerated NumPy, SciPy
Intel® MKL 

Intel® C and Fortran compilers
Linear algebra, universal functions, FFT

conda create –c intel intelpython3_full

docker pull intelpython/intelpython3_full

Accelerated Scikit-Learn
Intel® MKL

Intel® C and Fortran compilers
Intel® Data Analytics Acceleration Library (DAAL)

via NumPy/Scipy

Solutions for efficient parallelism
TBB4py

github.com/IntelPython/smp
Intel® MPI library

Python APIs for Intel® MKL functions
github.com/IntelPython/mkl_fft

github.com/IntelPython/mkl_random

github.com/IntelPython/mkl-service  [*]

Python APIs for Intel® DAAL 
github.com/IntelPython/daal4py

https://software.intel.com/en-us/distribution-for-python/benchmarks

Numba with upstreamed Intel contributions
Parallel Accelerator

support for SVML
support for TBB/OpenMP threading runtimes

pip install intel-numpy intel-scipy intel-scikit-learn



New Features for 2019

57
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Daal4py: Accelerated Analytics tools for Data Scientists

• Package created to address the needs of Data Scientists and Framework 
Designers to harness the Intel® Data Analytics Acceleration Library (DAAL) 
with a Pythonic API

• Pandas compatible, one-liner API for accessing many hardware accelerated 
Machine Learning and Analytics functions

• Powers our Scikit-Learn* accelerations in our shipped version of the package

• Extends capabilities past Scikit-learn by providing scaling and distributed 
modes
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HPAT: A compiler-based framework to speed up 

Pandas/NumPy 

• Used to accelerate the popular Pandas framework, specifically for the 

Dataframe construct used in analytics and machine learning

• Accelerates previously unoptimizable portion of end-to-end workflows by 
accelerating the dataframe and preprocessing steps of production-level 

machine learning

• Extends capabilities utilizing pandas instead of migrating to another 

production solution with little to no code changes

• Takes advantage of additional compute nodes via MPI for distributed scaling 
of compute kernels
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Scaling analytics workloads end-to-end

• Many solutions in the industry have been focused solely on performance of training 
or inference—but in practice this is only 10% of the actual time

• The majority of the time spent is from the data ingress and preprocessing steps

• Identifying the methods to speed up a data analytics tasks from end-to-end includes 
both preprocessing and scale out to complete the performance picture

• Creating both the initial prototype or discovery process with ML and extending the 
code to production with the same tools and increased performance is the desired 
workflow for any Data Scientist



Python* Data Analytics that 
scales
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® DAAL and HPAT
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Scaling analytics workloads end-to-end

Pandas
Spark
HPAT

Scikit-learn
Spark
DL-frameworks
daal4py

more nodes, more cores, more threads, wider vectors, …

Data Input Data 
Preprocessing Model Creation Prediction
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Scaling analytics workloads end-to-end

HPAT daal4py

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python analytics
(Pandas, Numpy & select custom Python)

Ease-of-use of scikit-learn 
+ Performance of DAAL

Automatically scales to multi-node with MPI

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node, 
100x fewer LOC wrt DAAL for multi-node
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End-to-end performance and scale out of analytics

Intel’s libraries, tools, and runtimes help accelerate the entire analytics 
process from preprocessing through machine learning and scale out

NumPy

Intel® Math Kernel 
Library (MKL)

Intel® 
Threading 

Building Blocks 
(TBB)

Pandas

HPAT

scikit-learn daal4py

Intel®
MPI

Intel® Data Analytics Acceleration Library 
(DAAL) 

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)

Preprocessing, Dataframe and 
Data manipulation

Machine Learning and Scale out

Data movement
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$ aprun -n # –N # python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))
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HPAT’s Scope of Functionalities (Early Preview)

Operations

• Python/Numpy basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

• Pandas

Interoperability • I/O integration (CSV, Parquet, HDF5, Xenon)

• Daal4py integration

Extend Numba to support
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Accelerating pandas CSV read

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz; 1chreads 
per core; 22 cores per socket; 2 sockets
Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2 
threads per core; 24 cores per socket;  2 sockets
Skylake 8180 S2P2C01B: 2.5GHz
1 thread per core; 28 cores per socket; 2 sockets

Patches merged to pandas mainline:
https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

70x-81x 
speedup

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784
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HPAT Details

• Open Source: https://github.com/IntelLabs/hpat

• BSD Licensed

• Built on top of Numba, leverages many of Intel’s vectorization optimizations

• Little to no code changes required (only @hpat.jit decorator)

• Optimizes the pandas framework and numpy code together to accelerate 
preprocessing code and tasks

• Major release later this year

https://github.com/IntelLabs/hpat
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scikit-learn

Accelerating Machine Learning

Intel® Data Analytics Acceleration Library 
(DAAL) 

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)

Ø Efficient memory layout
via Numeric Tables

Ø Blocking for optimal cache 
performance

Ø Computation mapped to 
most efficient matrix 
operations (in MKL)

Ø Parallelization via TBB

Ø Vectorization

Try it out!  conda install -c intel scikit-learn
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Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite



Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

71

Close to native code Scikit-learn* Performance with Intel® Distribution of Python 
Compared to Stock Python packages on Intel® Xeon® processors
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Function & Problem Size

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5 
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, 
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel 
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and 
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this 
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
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Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-Scalable-processors-
on-GCP.html
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Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out!  conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library 
(DAAL) 

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)
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import daal4py as d4p

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

# Create algo object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
# compute initial centers
ires = init.compute(data)
# results can have multiple attributes, we need centroids
Centroids = iris.centroids
# compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py 
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import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

# compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

aprun -n # -N # python ./kmeans.py

Distributed K-Means using daal4py
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Distributed K-Means Using DAAL (C++ API)
*******************************************************************************/
/*

!  Content:
!    C++ sample of K-Means clustering in the distributed processing mode
!******************************************************************************/

#include <mpi.h>

#include "daal.h"
#include "service.h"

#include "stdio.h"
#include <iostream>

using namespace std;
using namespace daal;

using namespace daal::algorithms;
using namespace daal::services;

typedef std::vector<byte> ByteBuffer;
typedef float algorithmFPType; /* Algorithm floating-point type */

/* K-Means algorithm parameters */

const size_t nClusters = 20;
const size_t nIterations = 5;

const size_t nBlocks = 4;

/* Input data set parameters */
const string dataFileNames[4] =
{

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv",
"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv"

};

#define mpi_root 0
const int step3ResultSizeTag = 1;
const int step3ResultTag = 2;

NumericTablePtr loadData(int rankId)

{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */

FileDataSource<CSVFeatureManager> dataSource(dataFileNames[rankId], DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);

/* Retrieve the data from the input file */
dataSource.loadDataBlock();

return dataSource.getNumericTable();
}

template <kmeans::init::Method method>
NumericTablePtr initCentroids(int rankId, const NumericTablePtr& pData);

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids);

template <kmeans::init::Method method>
void runKMeans(int rankId, const NumericTablePtr& pData, const char* methodName)
{

if(rankId == mpi_root)
std::cout << "K-means init parameters: method = " << methodName << std::endl;

NumericTablePtr centroids = initCentroids<method>(rankId, pData);
for(size_t it = 0; it < nIterations; it++)

centroids = computeCentroids(rankId, pData, centroids);
/* Print the clusterization results */
if(rankId == mpi_root)

printNumericTable(centroids, "First 10 dimensions of centroids:", 20, 10);
}

int main(int argc, char *argv[])

{
int rankId, comm_size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
MPI_Comm_rank(MPI_COMM_WORLD, &rankId);

NumericTablePtr pData = loadData(rankId);

runKMeans<kmeans::init::plusPlusDense>(rankId, pData, "plusPlusDense");
runKMeans<kmeans::init::parallelPlusDense>(rankId, pData, "parallelPlusDense");

MPI_Finalize();

return 0;
}

static int lengthsToShifts(const int lengths[nBlocks], int shifts[nBlocks])
{

int shift = 0;
for(size_t i = 0; i < nBlocks; shift += lengths[i], ++i)

shifts[i] = shift;
return shift;

}

/* Send the value to all processes in the group and collect received values into one table */
static NumericTablePtr allToAll(const NumericTablePtr& value)
{

std::vector<NumericTablePtr> aRes;
ByteBuffer dataToSend;

if(value.get())
serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();
int perNodeArchLength[nBlocks];
for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Allgather(&dataToSendLength, sizeof(int), MPI_CHAR, perNodeArchLength, sizeof(int), MPI_CHAR, MPI_COMM_WORLD);

int perNodeArchShift[nBlocks];
const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);
if(!totalToReceive)

return NumericTablePtr();

ByteBuffer dataToReceive(totalToReceive);
MPI_Allgatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, &dataToReceive[0], perNodeArchLength, perNodeArchShift, MPI_CHAR, MPI_COMM_WORLD);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)
{

if(!perNodeArchLength[i])

continue;
NumericTablePtr pTbl = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

aRes.push_back(pTbl);
}
if(!aRes.size())

return NumericTablePtr();
if(aRes.size() == 1)

return aRes[0];

/* For parallelPlus algorithm */
RowMergedNumericTablePtr pMerged(new RowMergedNumericTable());
for(size_t i = 0; i < aRes.size(); ++i)

pMerged->addNumericTable(aRes[i]);
return NumericTable::cast(pMerged);

}

/* Send the value to all processes in the group and collect received values into one table */
static void allToMaster(int rankId, const NumericTablePtr& value, std::vector<NumericTablePtr>& aRes)
{

const bool isRoot = (rankId == mpi_root);
aRes.clear();

ByteBuffer dataToSend;
if(value.get())

serializeDAALObject(value.get(), dataToSend);
const int dataToSendLength = dataToSend.size();
int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)
perNodeArchLength[i] = 0;

MPI_Gather(&dataToSendLength, sizeof(int), MPI_CHAR, isRoot ? perNodeArchLength : NULL, sizeof(int),
MPI_CHAR, mpi_root, MPI_COMM_WORLD);

ByteBuffer dataToReceive;

int perNodeArchShift[nBlocks];
if(isRoot)

{
const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);
if(!totalToReceive)

return;
dataToReceive.resize(totalToReceive);

}
MPI_Gatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, isRoot ? &dataToReceive[0] : NULL,

perNodeArchLength, perNodeArchShift, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)
return;

aRes.resize(nBlocks);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)
{

if(perNodeArchLength[i])
aRes[i] = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

}
}

template <kmeans::init::Method method>
NumericTablePtr initStep1(int rankId, const NumericTablePtr& pData)

{
const size_t nVectorsInBlock = pData->getNumberOfRows();

/* Create an algorithm object for the K-Means algorithm */
kmeans::init::Distributed<step1Local, algorithmFPType, method> local(nClusters, nBlocks*nVectorsInBlock, rankId*nVectorsInBlock);
local.input.set(kmeans::init::data, pData);

local.compute();
return allToAll(local.getPartialResult()->get(kmeans::init::partialCentroids));

}

template <kmeans::init::Method method>

void initStep2(int rankId, const NumericTablePtr& pData, DataCollectionPtr& localNodeData,
const NumericTablePtr& step2Input, bool bFirstIteration, std::vector<NumericTablePtr>& step2Results,

bool bOutputForStep5Required = false)
{

kmeans::init::Distributed<step2Local, algorithmFPType, method> step2(nClusters, bFirstIteration);
step2.parameter.outputForStep5Required = bOutputForStep5Required;
step2.input.set(kmeans::init::data, pData);
step2.input.set(kmeans::init::internalInput, localNodeData);
step2.input.set(kmeans::init::inputOfStep2, step2Input);

step2.compute();
if(bFirstIteration)

localNodeData = step2.getPartialResult()->get(kmeans::init::internalResult);
allToMaster(rankId, step2.getPartialResult()->get(

bOutputForStep5Required ? kmeans::init::outputOfStep2ForStep5 : kmeans::init::outputOfStep2ForStep3), step2Results);
}

template <kmeans::init::Method method>
NumericTablePtr initStep3(kmeans::init::Distributed<step3Master, algorithmFPType, method>& step3, std::vector<NumericTablePtr>& step2Results)

{
for(size_t i = 0; i < step2Results.size(); ++i)

step3.input.add(kmeans::init::inputOfStep3FromStep2, i, step2Results[i]);
step3.compute();
ByteBuffer buff;

NumericTablePtr step4InputOnRoot;
for(size_t i = 0; i < nBlocks; ++i)

{
NumericTablePtr pTbl = step3.getPartialResult()->get(kmeans::init::outputOfStep3ForStep4, i); /* can be null */
if(i == mpi_root)
{

step4InputOnRoot = pTbl;

continue;
}

buff.clear();
size_t size = pTbl.get() ? serializeDAALObject(pTbl.get(), buff) : 0;
MPI_Send(&size, sizeof(size_t), MPI_BYTE, int(i), step3ResultSizeTag, MPI_COMM_WORLD);
if(size)

MPI_Send(&buff[0], size, MPI_BYTE, int(i), step3ResultTag, MPI_COMM_WORLD);
}
return step4InputOnRoot;

}

NumericTablePtr receiveStep3Output(int rankId)
{

size_t size = 0;
MPI_Status status;
MPI_Recv(&size, sizeof(size_t), MPI_BYTE, mpi_root, step3ResultSizeTag, MPI_COMM_WORLD, &status);

if(size)
{

ByteBuffer buff(size);
MPI_Recv(&buff[0], size, MPI_BYTE, mpi_root, step3ResultTag, MPI_COMM_WORLD, &status);
return NumericTable::cast(deserializeDAALObject(&buff[0], size));

}
return NumericTablePtr();

}

template <kmeans::init::Method method>
NumericTablePtr initStep4(int rankId, const NumericTablePtr& pData, const DataCollectionPtr& localNodeData,

const NumericTablePtr& step4Input)
{

NumericTablePtr step4Result;
if(step4Input)
{

/* Create an algorithm object for the step 4 */
kmeans::init::Distributed<step4Local, algorithmFPType, method> step4(nClusters);
/* Set the input data to the algorithm */
step4.input.set(kmeans::init::data, pData);

step4.input.set(kmeans::init::internalInput, localNodeData);
step4.input.set(kmeans::init::inputOfStep4FromStep3, step4Input);

/* Compute and get the result */
step4.compute();
step4Result = step4.getPartialResult()->get(kmeans::init::outputOfStep4);

}
return allToAll(step4Result);

}

template<>
NumericTablePtr initCentroids<kmeans::init::plusPlusDense>(int rankId, const NumericTablePtr& pData)
{

const bool isRoot = (rankId == mpi_root);
const kmeans::init::Method method = kmeans::init::plusPlusDense;

/* Internal data to be stored on the local nodes */
DataCollectionPtr localNodeData;

/* Numeric table to collect the results */
RowMergedNumericTablePtr pCentroids(new RowMergedNumericTable());
/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);
pCentroids->addNumericTable(step2Input);

/* Create an algorithm object for the step 3 */
typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;
SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);
for(size_t iCenter = 1; iCenter < nClusters; ++iCenter)
{

std::vector<NumericTablePtr> step2ResultsOnMaster;
initStep2<method>(rankId, pData, localNodeData, step2Input, iCenter == 1, step2ResultsOnMaster);

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));
step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);
pCentroids->addNumericTable(step2Input);

}
return daal::data_management::convertToHomogen<float>(*pCentroids); /* can be returned as pCentroids as well */

}

template<>
NumericTablePtr initCentroids<kmeans::init::parallelPlusDense>(int rankId, const NumericTablePtr& pData)
{

const bool isRoot = (rankId == mpi_root);
const kmeans::init::Method method = kmeans::init::parallelPlusDense;

/* default value of nRounds used by all steps */
const size_t nRounds = kmeans::init::Parameter(nClusters).nRounds;

/* Create an algorithm object for the step 5 */

typedef kmeans::init::Distributed<step5Master, algorithmFPType, method> Step5Master;
SharedPtr<Step5Master> step5(isRoot ? new Step5Master(nClusters) : NULL);

/* Internal data to be stored on the local nodes */
DataCollectionPtr localNodeData;

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);
if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;
SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iRound = 0; iRound < nRounds; ++iRound)
{

/* Perform step 2 */

std::vector<NumericTablePtr> step2ResultsOnMaster;
initStep2<method>(rankId, pData, localNodeData, step2Input, iRound == 0, step2ResultsOnMaster);

/* Perform step 3 */
NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));
/* Perform step 4 */

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);
if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);
}

/* One more step 2 */
std::vector<NumericTablePtr> step2Results;
initStep2<method>(rankId, pData, localNodeData, step2Input, false, step2Results, true);
if(step5) /* isRoot == true */

{
for(size_t i = 0; i < step2Results.size(); ++i)

step5->input.add(kmeans::init::inputOfStep5FromStep2, step2Results[i]);
step5->input.set(kmeans::init::inputOfStep5FromStep3, step3->getPartialResult()->get(kmeans::init::outputOfStep3ForStep5));
step5->compute();
step5->finalizeCompute();
return step5->getResult()->get(kmeans::init::centroids);

}
return NumericTablePtr();

}

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids)
{

const bool isRoot = (rankId == mpi_root);

ByteBuffer nodeCentroids;
size_t CentroidsArchLength = (isRoot ? serializeDAALObject(initialCentroids.get(), nodeCentroids) : 0);

/* Get centroids from the root node */
MPI_Bcast(&CentroidsArchLength, sizeof(size_t), MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

nodeCentroids.resize(CentroidsArchLength);
MPI_Bcast(&nodeCentroids[0], CentroidsArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

NumericTablePtr centroids = NumericTable::cast(deserializeDAALObject(&nodeCentroids[0], CentroidsArchLength));

/* Create an algorithm to compute k-means on local nodes */
kmeans::Distributed<step1Local, algorithmFPType, kmeans::lloydDense> localAlgorithm(nClusters);

/* Set the input data set to the algorithm */

localAlgorithm.input.set(kmeans::data, pData);
localAlgorithm.input.set(kmeans::inputCentroids, centroids);

/* Compute k-means */
localAlgorithm.compute();

/* Serialize partial results required by step 2 */

ByteBuffer nodeResults;
size_t perNodeArchLength = serializeDAALObject(localAlgorithm.getPartialResult().get(), nodeResults);

/* Serialized data is of equal size on each node if each node called compute() equal number of times */
ByteBuffer serializedData;
if(isRoot)

serializedData.resize(perNodeArchLength * nBlocks);

/* Transfer partial results to step 2 on the root node */
MPI_Gather(&nodeResults[0], perNodeArchLength, MPI_CHAR, serializedData.size() ? &serializedData[0] : NULL,

perNodeArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(isRoot)

{
/* Create an algorithm to compute k-means on the master node */
kmeans::Distributed<step2Master, algorithmFPType, kmeans::lloydDense> masterAlgorithm(nClusters);

for(size_t i = 0; i < nBlocks; i++)
{

/* Deserialize partial results from step 1 */

SerializationIfacePtr ptr = deserializeDAALObject(&serializedData[perNodeArchLength * i], perNodeArchLength);
kmeans::PartialResultPtr dataForStep2FromStep1 = dynamicPointerCast<kmeans::PartialResult, SerializationIface>(ptr);

/* Set local partial results as input for the master-node algorithm */
masterAlgorithm.input.add(kmeans::partialResults, dataForStep2FromStep1);

}

/* Merge and finalizeCompute k-means on the master node */
masterAlgorithm.compute();

masterAlgorithm.finalizeCompute();

/* Retrieve the algorithm results */
return masterAlgorithm.getResult()->get(kmeans::centroids);

}

return NumericTablePtr();
}

~400 LOC total
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Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 
EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating 
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-Means (10 
clusters) of 1.12 TB of data in 107.4 seconds and 35.76 GB of data in 
4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear 
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB of data 
in less than 48 milliseconds.
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import daal4py as d4p

# Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

# assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

# on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

# finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py 
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Intel® Data Analytics Acceleration (Intel® DAAL) Algorithms 
supported by daal4py Data Transformation and Analysis

Basic statistics for 
datasets

Low order 
moments

Variance-
Covariance 

matrix

Correlation and 
dependence

Cosine distance

Correlation 
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality 
reduction 

PCA

Outlier detection

Association rule 
mining (Apriori)

Univariate

MultivariateQuantiles

Order 
statistics

Optimization solvers 
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

79
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Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised 
learning

Regression

Linear Regression

Classification

Weak 
learner*

Boosting*
(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised 
learning

K-Means 
Clustering

EM for GMM

Collaborative 
filtering

Alternating
Least Squares

Ridge Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

80
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Intel® DAAL for Python*: Summary

•Close to native performance through Intel® DAAL

•Efficient MPI scale-out

•Streaming
Fast & Scalable

•Known usage model

•PicklableEasy to use

•Object model separating concerns

•Plugs into scikit-learn

•Plugs into HPAT
Flexible

•Open source: https://github.com/IntelPython/daal4pyOpen

https://intelpython.github.io/daal4py/

https://github.com/IntelPython/daal4py
https://intelpython.github.io/daal4py/
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Intel® HPAT: How to get (check github)

•conda create -n HPAT -c ehsantn -c anaconda -c conda-forge hpatConda

https://intellabs.github.io/hpat-doc/dev/index.html

https://intellabs.github.io/hpat-doc/dev/index.html
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More information at 
https://software.intel.com/en-us/distribution-for-
python

CALL TO ACTION

LEARN

EXPLORE

ENGAGE

Use Intel’s accelerated Python* 
libraries

Use Our Forums for Free Support
forums.intel.com

For Disclosure under NDA Only

https://software.intel.com/en-us/distribution-for-python
https://ai.intel.com/framework-optimizations/
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Questions?

Intel® Distribution for Python*
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat


